Acta Cryst. (1994). C50, 1890-1892

Tetrakis(trimethylphenylammonium) Octa- μ-bromo-dibromohexacuprate(I)

Guozh Hu and Elizabeth M. Holt
Department of Chemistry, Oklahoma State University, Stillwater, Oklahoma 74078, USA

(Received 24 November 1993; accepted 18 July 1994)

Abstract

The title complex, $\left[\mathrm{N}\left(\mathrm{CH}_{3}\right)_{3}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)\right]_{4}\left[\mathrm{Cu}_{6} \mathrm{Br}_{10}\right]$, contains a centrosymmetric eight-membered ring of alternating Cu and Br atoms fused to two six-membered rings of alternating Cu and Br atoms. The average $\mathrm{Cu}-$ Br bond length is 2.377 (4) \AA. A terminal Br atom is attached to one Cu atom of each of the six-membered rings $[\mathrm{Cu}-\mathrm{Br} 2.290(4) \AA \AA$]. Two close $\mathrm{Cu} \cdot \cdots \mathrm{Cu}$ contacts [2.664 (4) and 2.706 (4) \AA] exist in each six-membered ring.

Comment

Anionic copper(I) halide complexes exhibit a wide variety of stoichiometries and structural forms, which apparently depend upon the identity of the cation and the halide ion (Jagner \& Helgesson, 1991). For example, $\left(\mathrm{Et}_{4} \mathrm{~N}\right)_{6}\left[\mathrm{Cu}_{6} \mathrm{I}_{11}\right]$ II contains a trigonal prism of six Cu atoms, each bound to a terminal I atom. The five faces of the geometric copper motif are each centered by an I atom. An uncoordinated I^{-}ion is present in the unit cell (Mahdjour-Hassan-Abadi, Hartl \& Fuchs, 1984). Changing the halide ion from iodide to chloride gives $\left(\mathrm{Et}_{4} \mathrm{~N}\right)_{3}\left[\mathrm{Cu}_{7} \mathrm{Cl}_{10}\right]$ (Asplund \& Jagner, 1984), in which an eight-membered ring of alternating Cu and Cl atoms is fused to two six-membered rings of similar alternating atom identity. Adjacent $\mathrm{Cu}_{6} \mathrm{Cl}_{9}$ moieties are linked into a polymeric chain by linear $\mathrm{Cl}-\mathrm{Cu}-\mathrm{Cl}$ bridges between the six-membered rings. The $\mathrm{Cu}-\mathrm{Cl}$ distances in the bridges [$2.165(2) \AA$] are shorter than the $\mathrm{Cu}-\mathrm{Cl}$ distances for the three-coordinate Cu atoms in the ring system $[2.206$ (2)-2.346 (2) $\AA \AA$. The $\mathrm{Cu} \cdots \mathrm{Cu}$ distances are all in excess of 2.890 (2) \AA.

Similarly, the copper chloride formed using trimethylphenylammonium as a cation has a linear CuCl_{2}^{-} structure (Andersson \& Jagner, 1985b), whereas using the same cation but replacing Cl with Br leads to $\left[\mathrm{N}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)\left(\mathrm{CH}_{3}\right)_{3}\right]_{2} \mathrm{Cu}_{2} \mathrm{Br}_{4}$, in which a discrete dimer of Cu atoms is bridged by two Br atoms and each Cu atom is also bonded to a terminal Br atom [Cu Br (terminal) 2.310 (1), $\mathrm{Cu}-\mathrm{Br}$ (bridging) 2.417 (1) and 2.421 (1), $\mathrm{Cu} \cdots \mathrm{Cu} 2.738$ (2) \AA (Andersson \& Jagner, 1985a)]. However, the fact that we have identified a second bromide containing $\mathrm{N}\left(\mathrm{CH}_{3}\right)_{3}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)^{+}$as a cation
serves as a warning that product mixtures may not be homogeneous and that further products of unanticipated stoichiometries may exist.

The ring system of the title structure, (I) (Fig. 1), resembles the polymeric structure of $\mathrm{Cu}_{7} \mathrm{Cl}_{10}$, but lacks the additional Cu atom that links the terminal halide atoms of adjacent $\mathrm{Cu}_{6} \mathrm{Cl}_{10}$ units. In the structure of $\mathrm{Cu}_{7} \mathrm{Cl}_{10}$ all the $\mathrm{Cu} \cdots \mathrm{Cu}$ distances exceed 2.890 (2) \AA, whereas the title complex has two close $\mathrm{Cu} \cdots \mathrm{Cu}$ contacts [2.664 (4) and 2.706 (4) \AA] in each six-membered ring. Furthermore, the $\mathrm{Cu}-\mathrm{Br} 1$ distances [2.287 (4) and 2.279 (4) \AA] are shorter than the average $\mathrm{Cu}-\mathrm{Br}$ dis-

Fig. 1. A view of the title complex showing displacement ellipsoids at the 50% probability level. Symmetry code: (i) $1-x,-y, 1-z$.

Fig. 2. The packing of the title complex in the unit cell.
tance of $2.377(4) \AA$ and the $\mathrm{Cu} 2-\mathrm{Br} 1-\mathrm{Cu} 1$ angle of $103.4(2)^{\circ}$ is larger than the average $\mathrm{Cu}-\mathrm{Br}-\mathrm{Cu}$ angle of $80.6(1)^{\circ}$. The anomalous details of the bonding at Brl undoubtedly stem from conformational changes within the six-membered rings as a result of $\mathrm{Cu} \cdots \mathrm{Cu}$ contacts which may be considered to be interactive (Mehrotra \& Hoffmann, 1978).

The trimethylphenylammonium cations show no strong interactions with the copper bromide moieties (Fig. 2).

Experimental

$\left[\mathrm{N}\left(\mathrm{CH}_{3}\right)_{3} \mathrm{Ph}\right] \mathrm{Cl}(0.347 \mathrm{~g}, 2 \mathrm{mmol})$ was dissolved in 20 ml of ethanol and the resulting colorless solution added to an ethanolic solution (20 ml) of $\mathrm{CuBr}(0.29 \mathrm{~g}, 2 \mathrm{mmol}$) and a small amount of ascorbic acid to retard oxidation. The combined solution was heated under reflux in an atmosphere of nitrogen for 6 h , cooled to room temperature, filtered and allowed to stand. Brown plate-like crystals were observed to form after four days.

Crystal data

$2\left(\mathrm{C}_{9} \mathrm{H}_{14} \mathrm{~N}\right)\left[\mathrm{Cu}_{3} \mathrm{Br}_{5}\right]$
$M_{r}=862.59$
Monoclinic
$P 2_{1} / n$
$a=9.477$ (2) \AA
$b=21.712(4) \AA$
$c=12.683$ (3) \AA
$\beta=94.43$ (3) ${ }^{\circ}$
$V=2601.9(10) \AA^{3}$
$Z=4$
$D_{x}=2.202 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

Siemens P4 four-circle diffractometer
$\theta / 2 \theta$ scans
Absorption correction:
empirical
$T_{\min }=0.352, T_{\text {max }}=$ 0.794

3157 measured reflections
2381 independent reflections
1019 observed reflections
$[I>2 \sigma(I)]$
Refinement
Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.0582$
$w R\left(F^{2}\right)=0.1335$
$S=0.939$
2086 reflections
172 parameters
H -atom positions refined using a riding model $w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0947 P)^{2}\right]$ where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.001$

Mo $K \alpha$ radiation
$\lambda=0.71073 \AA$
Cell parameters from 21 reflections
$\theta=6.79-10.634^{\circ}$
$\mu=10.116 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Plate
$0.6 \times 0.4 \times 0.2 \mathrm{~mm}$ Brown
$R_{\text {int }}=0.0563$
$\theta_{\text {max }}=19.99^{\circ}$
$h=-1 \rightarrow 11$
$k=-1 \rightarrow 25$
$l=-15 \rightarrow 15$
3 standard reflections monitored every 97 reflections intensity variation: 0.009\%
$\Delta \rho_{\text {max }}=0.665 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.656 \mathrm{e}^{-3}$
Extinction correction: SHELXL93 (Sheldrick, 1994)

Extinction coefficient: 0.0000 (9)

Atomic scattering factors from International Tables for Crystallography (1992, Vol. C, Tables 4.2.6.8 and 6.1.1.4)

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters $\left(\AA^{2}\right)$
$U_{\text {eq }}=(1 / 3) \Sigma_{i} \Sigma_{j} U_{i j} a_{i}^{*} a_{j}^{*} \mathbf{a}_{i} \mathbf{a}_{j}$.

	x	y	z	$U_{\text {eq }}$
Cul	0.3462 (3)	0.0561 (2)	0.3444 (2)	0.0834 (10)
Cu 2	0.4096 (3)	0.05981 (15)	0.5560 (2)	0.0799 (10)
Cu 3	0.2784 (3)	0.16844 (15)	0.4082 (2)	0.0808 (10)
Br 1	0.4779 (3)	0.0068 (2)	0.7065 (2)	0.1062 (11)
Br 2	0.1242 (3)	0.24341 (14)	0.4536 (2)	0.0979 (10)
Br 3	0.5071 (3)	0.15452 (13)	0.5079 (2)	0.0823 (9)
Br 4	0.2753 (3)	0.13503 (14)	0.2213 (2)	0.0889 (10)
Br5	0.1779 (3)	0.03960 (13)	0.4738 (2)	0.0795 (9)
N1	0.7983 (15)	0.1430 (7)	0.2208 (11)	0.042 (4)
C11	0.7804 (20)	0.0921 (9)	0.1430 (14)	0.042 (5)
C 12	0.6645 (23)	0.0967 (10)	0.0675 (15)	0.067 (7)
C13	0.6526 (26)	0.0450 (12)	-0.0096 (18)	0.081 (8)
C14	0.7362 (28)	0.0011 (14)	-0.0101 (20)	0.096 (9)
C15	0.8353 (36)	0.0015 (16)	0.0550 (24)	0.140 (12)
C16	0.8734 (33)	0.0427 (14)	0.1379 (23)	0.122 (10)
C17	0.6674 (20)	0.1753 (10)	0.2430 (16)	0.075 (7)
C18	0.8520 (23)	0.1164 (10)	0.3238 (14)	0.086 (8)
C19	0.8952 (20)	0.1919 (9)	0.1847 (15)	0.067 (7)
N2	-0.1139 (14)	0.1498 (6)	0.7120 (10)	0.032 (4)
C21	0.0216 (18)	0.1567 (8)	0.7798 (13)	0.032 (5)
C22	0.0137 (20)	0.1797 (9)	0.8789 (14)	0.044 (5)
C23	0.1444 (21)	0.1854 (9)	0.9412 (16)	0.059 (6)
C24	0.2732 (22)	0.1713 (10)	0.9065 (15)	0.060 (6)
C25	0.2690 (24)	0.1511 (10)	0.8058 (16)	0.070 (7)
C26	0.1496 (20)	0.1411 (9)	0.7377 (15)	0.048 (6)
C27 \dagger	-0.1682 (33)	0.2118 (10)	0.6889 (27)	0.054 (13)
C28 \dagger	-0.0918 (35)	0.1195 (15)	0.6089 (20)	0.067 (14)
C29 \dagger	-0.2168 (32)	0.1137 (15)	0.7651 (21)	0.051 (12)
C27 \dagger	-0.1305 (59)	0.0875 (13)	0.6690 (42)	0.096 (26)
C28' \dagger	-0.2433 (34)	0.1628 (23)	0.7698 (29)	0.045 (17)
C29' \dagger	-0.1204 (47)	0.1945 (19)	0.6223 (29)	0.053 (19)

\dagger Site occupancy $=0.5$.
Table 2. Selected geometric parameters $\left(\AA \AA^{\circ}\right)$

$\mathrm{Cu} 1-\mathrm{Br} 1^{1}$	2.287 (4)	C12-C13	1.49 (3)
$\mathrm{Cu} 1-\mathrm{Br} 4$	2.380 (4)	C13-C14	1.24 (3)
$\mathrm{Cu} 1-\mathrm{Br} 5$	2.402 (4)	C14-C15	1.20 (3)
$\mathrm{Cu} 1-\mathrm{Cu} 3$	2.664 (4)	C15-C16	1.40 (3)
$\mathrm{Cu} 1-\mathrm{Cu} 2$	2.706 (4)	N2-C29	1.46 (2)
$\mathrm{Cu} 2-\mathrm{Br} 1$	2.279 (4)	N2-C27 ${ }^{\prime}$	1.46 (2)
$\mathrm{Cu} 2-\mathrm{Br} 3$	2.354 (4)	N2-C27	1.46 (2)
$\mathrm{Cu} 2-\mathrm{Br} 5$	2.397 (4)	N2-C29 ${ }^{\prime}$	1.49 (2)
$\mathrm{Cu} 3-\mathrm{Br} 2$	2.290 (4)	N2-C28	1.49 (2)
Cu3-Br3	2.442 (4)	N2-C21	1.50 (2)
Cu3-Br4	2.477 (4)	N2-C28 ${ }^{\prime}$	1.50 (2)
N1-C17	1.47 (2)	C21-C22	1.36 (2)
N1-C11	1.48 (2)	C21-C26	1.40 (2)
N1-C18	1.48 (2)	C22-C23	1.42 (2)
N1-C19	1.50 (2)	C23-C24	1.36 (2)
C11-C16	1.39 (3)	C24-C25	1.35 (2)
$\mathrm{Cl1}-\mathrm{Cl} 2$	1.40 (2)	C25-C26	1.39 (2)
$\mathrm{Brl}{ }^{\text {i }}$ - $\mathrm{Cul}-\mathrm{Br} 4$	114.84 (15)	$\mathrm{Br} 2-\mathrm{Cu} 3-\mathrm{Br} 4$	119.2 (2)
$\mathrm{Brl}{ }^{\text {i }}-\mathrm{Cul}-\mathrm{Br} 5$	129.9 (2)	$\mathrm{Br} 3-\mathrm{Cu} 3-\mathrm{Br} 4$	113.82 (14)
$\mathrm{Br} 4-\mathrm{Cul}-\mathrm{Br} 5$	112.8 (2)	$\mathrm{Cu} 2-\mathrm{Brl}-\mathrm{Cu} 1^{\mathrm{i}}$	103.4 (2)
$\mathrm{Brl}-\mathrm{Cu} 2-\mathrm{Br} 3$	124.5 (2)	$\mathrm{Cu} 2-\mathrm{Br} 3-\mathrm{Cu} 3$	83.79 (13)
$\mathrm{Brl}-\mathrm{Cu} 2-\mathrm{Br} 5$	117.6 (2)	$\mathrm{Cul}-\mathrm{Br} 4-\mathrm{Cu} 3$	66.51 (12)
$\mathrm{Br} 3-\mathrm{Cu} 2-\mathrm{Br} 5$	114.3 (2)	Cu2-Br5-Cu1	68.64 (12)
$\mathrm{Br} 2-\mathrm{Cu} 3-\mathrm{Br} 3$	121.0 (2)		
Symmetry code: (i) $1-x,-y, 1-z$.			

An extinction correction was calculated using SHELXL93 (Sheldrick, 1994), but proved to be negligible. The methyl groups are disordered such that the sites at C27, C28 and C29 are related to the sites at $\mathrm{C} 27^{\prime}, \mathrm{C} 28^{\prime}$ and $\mathrm{C} 29^{\prime}$ by a 60° rotation, each site being only half occupied. Data collection, data reduction and cell refinement: XSCANS (Siemens, 1992). Program(s) used to solve structure: SHELXS86 (Sheldrick, 1990).

Program(s) used to refine structure: SHELXL93. Molecular graphics: XP. Software used to prepare material for publication: SHELXL93.

The authors acknowledge NSF grant EHR-9108771

Lists of structure factors, anisotropic displacement parameters, H -atom coordinates and bond distances and angles involving non-H atoms have been deposited with the IUCr (Reference: CR1121). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

Andersson, S. \& Jagner, S. (1985a). Acta Chem. Scand. Ser. A, 39, 423-428.
Andersson, S. \& Jagner, S. (1985b). Acta Chem. Scand. Ser. A, 39, 709-812.
Asplund, M. \& Jagner, S. (1984). Acta Chem. Scand. Ser. A, 38, 807-811.
Jagner, S. \& Helgesson, G. (1991). Adv. Inorg. Chem. 37, 1-41.
Mahdjour-Hassan-Abadi, F., Hartl, H. \& Fuchs, J. (1984). Angew. Chem. 96, 497-497.
Mehrotra, P. \& Hoffmann, R. (1978). Inorg. Chem. 17, 2187-2189.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1994). J. Appl. Cryst. In preparation.
Siemens (1992). XSCANS. X-ray Single Crystal Analysis System. Version 2.0. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Acta Cryst. (1994). C50, 1892-1894
(BEDT-TTF $)_{3}\left[\mathrm{CuBr}_{2} \mathrm{Cl}_{2}\right]$

S. Hebrard, G. Bravic, J. Gaultier and D. Chasseau

Laboratoire de Cristallographie et de Physique Cristalline, URA 144 CNRS, Université Bordeaux I, 351 Cours de la Libération, F-33405 Talence CEDEX, France

M. Kurmoo, D. Kanazawa and P. Day
The Royal Institution of Great Britain, 21 Albemarle Street, London W1X 4BS, England

(Received 13 September 1993; accepted 19 May 1994)

Abstract

The structure of the title compound, $\operatorname{tris}\left[3,4,3^{\prime}, 4^{\prime}-\right.$ bis(ethylenedithio)-2, $2^{\prime}, 5,5^{\prime}$-tetrathiafulvalene] dibromodichlorocuprate $(2-), \quad\left(\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~S}_{8}\right)_{3}\left[\mathrm{CuBr}_{2} \mathrm{Cl}_{2}\right]$, consists of alternate layers of BEDT-TTF molecules [BEDT-TTF $=3,4,3^{\prime}, 4^{\prime}$-bis(ethylenedithio)-2, $2^{\prime}, 5,5^{\prime}-$ tetrathiafulvalene] and pseudo-square-planar $\left[\mathrm{CuBr}_{2} \mathrm{Cl}_{2}\right]^{2-}$ anions. Two crystallographically

independent BEDT-TTF molecules (A and B) are observed with approximate charges of 0 and +1 , respectively. The BEDT-TTF molecules are stacked in an $A B B A B B$ fashion with a dihedral angle of 67° between the stacks, as in the α phase; short $S \cdots S$ contacts result in two-dimensional conducting layers.

Comment

Considerable efforts are being devoted to the search for superconductors with higher transition temperatures (Proceedings of the International Conference on Synthetic Metals, 1993). Among the compounds studied are the salts of organic electron donors such as BEDT-TTF, which provides some of the highest T_{c} 's among the organic chalcogenides. Several studies of the effect of the shape, size and charge of the counter anions have developed guidelines for the synthesis of conducting polytypes. Of particular interest, due to the interplay between superconductivity and magnetism, are the salts containing transition metal anions with a magnetic moment (Kurmoo et al., 1993). We report here the crystal structure of one member of this family, which contains a d^{9} ion, (BEDT-TTF) ${ }_{3}\left[\mathrm{CuBr}_{2} \mathrm{Cl}_{2}\right]$, (I).

The title compound is isostructural with (BEDTTTF) ${ }_{3}\left[\mathrm{CuBr}_{4}\right]$ (Guionneau et al., 1994) and consists of BEDT-TTF layers separated by layers of $\left[\mathrm{CuBr}_{2} \mathrm{Cl}_{2}\right]^{2-}$ anions. Apart from the halogen atoms all of the atoms are ordered. The refined occupancies of the sites for the Cl and the Br atoms show statistical disorder such that each halide site is approximately $50 \% \mathrm{Cl}$ and $50 \% \mathrm{Br}$. The mean $\mathrm{Cu}-\mathrm{Cl}[2.311(3) \AA]$ and $\mathrm{Cu}-\mathrm{Br}[2.391(3) \AA]$ dis-

Fig. 1. A view of the two independent molecules of BEDT-TTF in the unit cell, showing displacement ellipsoids at the 50% probability level. The second half of the top molecule is generated by an inversion centre.

